Remaining-Useful-Life Prediction for Li-Ion Batteries

نویسندگان

چکیده

This paper aims to establish a predictive model for battery lifetime using data analysis. The procedure of establishment is illustrated in detail, including the pre-processing, modeling, and prediction. characteristics lithium-ion batteries are introduced. In this study, analysis performed with MATLAB, open-source provided by NASA. addressed models include decision tree, nonlinear autoregression, recurrent neural network, long short-term memory network. part training, root-mean-square error, integral squared absolute error considered cost functions. Based on defined health indicator, remaining useful life can be predicted. confidence interval used describe level each According test results, network provides best performance among all models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining remaining useful life for Li-ion batteries

A high fidelity system for estimating the remaining useful life (RUL) for Li-ion batteries for aerospace applications is presented. The system employs particle filtering coupled with outlier detection to predict RUL. Calculations of RUL are based on autonomous measurements of the battery state-ofhealth by onboard electronics. Predictions for RUL are fed into a maintenance advisor which allows o...

متن کامل

An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries

Prognostics is an emerging science of predicting the health condition of a system (or its components) based upon current and previous system states. A reliable predictor is very useful to a wide array of industries to predict the future states of the system such that the maintenance service could be scheduled in advance when needed. In this paper, an adaptive recurrent neural network (ARNN) is ...

متن کامل

Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture

The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimoda...

متن کامل

Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error

Remaining useful life (RUL) prediction is central to the prognostics and health management (PHM) of lithium-ion batteries. This paper proposes a novel RUL prediction method for lithium-ion batteries based on the Wiener process with measurement error (WPME). First, we use the truncated normal distribution (TND) based modeling approach for the estimated degradation state and obtain an exact and c...

متن کامل

Application of Unscented Particle Filter in Remaining Useful Life Prediction of Lithium-ion Batteries

Accurate prediction of the remaining useful life of a faulty component is important to the health management of the system. It gives operators information about when the component should be replaced. This paper studied the remaining useful life prediction of the lithium-ion batteries. Some work has been done to solve this problem, but it still remains challengeable. Particle filter (PF) is a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16073096